SDOS - Small Device Operating System Documentation

User Documentation
by

Evan Hunter

erhunter@hotmail.com

12 July 2001
Table of Contents

3Introduction

Writing Applications
3
Applications using User_Application.c
3
Initialisation Function
3
Without User_Application.c
3
Blowing the stack
3
User API
4
CreateProc
4
ProcExit
4
Suspend
5
Suspend_Other_Proc
5
Resume
5
Porting to other processors / compilers
6
New files
6
Changed Files
6
New Code for platform_specific_Your_Platform.h
7

Introduction

SDOS (Small Device Operating System) is a multi-tasking operating system for microcontrollers and small microprocessors. It allows the user application to have several processes running simultaneously. Currently it is only implemented for the 8051, but it has been designed so that porting to another type of microcontroller, or compiler is simple.

SDOS may be used freely for non-commercial or educational purposes. For commercial uses, please contact me for further information. (erhunter@hotmail.com)

Writing Applications

Writing applications using SDOS is very simple. If you have Microsoft Visual C++ 6.0, then simply open the workspace file (SDOS.dsw).

If you do not have Visual C++, then you will need to use a text editor to edit your source files, then use the batch files (Compile_Debug.bat, Compile_Release.bat, Simulate.bat) to compile and test the program.

Applications using User_Application.c

The simplest way to create an application is to edit the User_Application.c file, to your own reqirements, although you can define your own source file(s). The system functions provided by SDOS are listed in the user API section. You may also wish to change the settings in the appropriate application/platform/compiler specific file, such as application_specific_8051.h. Olso you may want to change settings in the application_specific.h file.

Initialisation Function

The initprocfn function defines the very first user process that is created, hence, this is where you should put the initialisation for your program (you could have this as the entire program if desired).

The prototype for this function is:
void initprocfn (void)

Without User_Application.c

If you do not want to use User_Application.c, then you need to have a source file which defines the initprocfn function. Also you will need to have #include "sdos.h" at the top of any file which uses the system functions. When compiling your own source files that use system functions, you will need to specify a preprocessor definition in the compilers command-line. This will tell the system which target processor/compiler is being used.

Currently the only valid platform definition is: PLATFORM_8051_SDCC
Blowing the stack

One of the settings defined in application_specific.h is the size of the stack for each user process. This is very important, since if a process blows it's stack, then all processes will probably crash. Hence, it is important to determine how much stack space your processes will need, and ensure that they have at least that much available.

User API

CreateProc

Creates a new process and starts it running.

Prototype:

processnumber createproc (void (* procfunc)(void))

Parameters:

procfunc -
This is the function which contains the code to be run for this process, it must have the following prototype: void myfunc(void)

Returns:

processnumber -
The process number which can be used in other function calls such as resume. Returns MAX_PROCESSES_REACHED if there are no free processes.

ProcExit

Stops and deletes the currently running process (the one calling this function). This statement must be put at the end of every process function which can end, otherwise the function will try to return, but will return to an invalid point.

Prototype:

void procexit (void)

Parameters:

None

Returns:

Nothing

Suspend

Suspends the execution of the currently running process (the one calling this function). To continue execution, the resume function must be called from another process or from an interrupt service routine.

Prototype:

void suspend (void)

Parameters:

None

Returns:

Nothing

Suspend_Other_Proc

Suspends the execution of a process other than the currently running process. To continue execution, the resume function must be called from a process or an interrupt service routine.

Prototype:

void suspend_other_proc (processnumber procno)

Parameters:

Procno -
The process number of the process to suspend, this is the number that is returned by the createproc function.

Returns:

Nothing

Resume

Continues execution of a process which was previously suspended.

Prototype:

void resume (processnumber procno)

Parameters:

procno -
The number of the process to resume, this is the number that is returned by the createproc function.

Returns:

Nothing

Porting to other processors / compilers

This operating system has been designed to be portable, and the following section shows how you can port it to another processor or compiler.

New files

You will need to create a number of files which will contain all the device/compiler specific code for your new platform.

platform_specific_Your_Platform.h
This file will contain all the macros and type definitions specific to the new platform. It will require the most work, but you could copy and modify the file platform_specific_8051_SDCC.h

application_specific_Your_Platform.h
This file will contain any settings needed by your new platform which may need to be changed by the user for their application. You could use application_specific_8051.h as an example of this file.

Changed Files

platform_specific_headers.h

This file needs to be modified to recongise the new platform, the following gives an example of how this might be done:

#ifdef PLATFORM_8051_SDCC

#include "platform_specific_8051_SDCC.h"

#else

#ifndef PLATFORM_YOUR_PLATFORM

#include "platform_specific_Your_Platform.h"

#else

#error No Platform Specified

#endif /* PLATFORM_YOUR_PLATFORM */

#endif /* PLATFORM_8051_SDCC */

platform_specific_funcs.c

Any extra functions needed by the new platform should be placed in this file, surrounded by #ifndef PLATFORM_YOUR_PLATFORM and #endif.

New Code for platform_specific_Your_Platform.h

This section describes the code that needs to be written for the new platform which will reside in platform_specific_Your_Platform.h.

Several of these macros will require inline assembler, but you may find that some can be written in C. Where a macro is not needed, define it but give no value.

Typedef :
Stacktype

Purpose :
Defines what datatype should be used for pointing to stacks

Example :
typedef data void * stacktype;

Macro :
ISR_POST_WORDS

Purpose :
Provides any words necessary after the ISR function definition in order to define it as an ISR

Example :
#define ISR_POST_WORDS interrupt 1 using 1

Macro :
DISABLE_INTERRUPTS_WORDS

Purpose :
Provides any words necessary after a function declaration in order to make it disable interrupts during its execution

Example :
#define DISABLE_INTERRUPTS_WORDS critical

Macro :
JUMP_TO(jump_address)

Purpose :
This macro causes the system to jump to a particular program address, similar to the goto statement

Example :
#define JUMP_TO(addr8) \

 _asm \

 dec sp \

 _endasm ; _asm \

 dec sp \

 _endasm ; \

 PUSH_INT_ONTO_STACK((code char *)addr8); \

 _asm \

 ret \

 endasm

Macro :
SAVE_NEW_PROGRAM_COUNTER_TO_STACK(program_address)

Purpose :
Pushes the program address provided onto the stack, used to simulate the way the program counter is saved before calling a function.

Example :
#define SAVE_NEW_PROGRAM_COUNTER_TO_STACK(addr1) \

 PUSH_INT_ONTO_STACK((unsigned int)*addr1)

Macro :
SAVE_STACK_INFO (&stacktype_variable)

Purpose :
Copies the value of the stack pointer into the variable provided, used when swaping stacks

Example :
#define SAVE_STACK_INFO(addr2) (*addr2) = (SP)

Macro :
CHANGE_STACK

Purpose :
Copies the value of the variable provided into the stack pointer, used when swaping stacks

Example :
#define CHANGE_STACK(addr3) \

 SP = (unsigned char)(addr3)

Macro :
CREATE_NEW_STACK

Purpose :
Sets a variable provided to point to a new stack space for the process with the process number which is provided

Example :
#define CREATE_NEW_STACK(procno, newstackptr) \

newstackptr = (stacktype)(((char * data) \

 &stackspace[procno*PROCESS_STACK_SIZE])-1);

Macro :
SETUP_ISR_TIMER

Purpose :
Initialises the system preemption timer

Example :
#define SETUP_ISR_TIMER \

 TR0 = 0; \

 IT0 = 0; \

 ET0 = 1

Macro :
START_ISR_TIMER

Purpose :
Starts the system preemption timer

Example :
#define START_ISR_TIMER \

 TL0 = PREEMPTION_TIMER_PERIOD_LOW_BYTE; \

 TH0 = PREEMPTION_TIMER_PERIOD_HIGH_BYTE; \

 TR0 = 1

Macro :
STOP_ISR_TIMER

Purpose :
Stops the system preemption timer

Example :
#define STOP_ISR_TIMER TR0 = 0

Macro :
ISR_SAVE_PROCESSOR_STATE_TO_STACK

Purpose :
Saves the current processor state by pushing the values of all the registers onto the current stack, used when switching processes.

This ISR version is used from within an ISR function.

Example :
#define ISR_SAVE_PROCESSOR_STATE_TO_STACK
\

 _asm \

 push acc \

 _endasm ; _asm \

 push b \

 _endasm ; _asm \

 push dph \

 _endasm ; _asm \

 push dpl \

 _endasm ; _asm \

 push 0x00 \

 _endasm ; _asm \

 push 0x01 \

 _endasm ; _asm \

 push 0x02 \

 _endasm ; _asm \

 push 0x03 \

 _endasm ; _asm \

 push 0x04 \

 _endasm ; _asm \

 push 0x05 \

 _endasm ; _asm \

 push 0x06 \

 _endasm ; _asm \

 push 0x07 \

 _endasm

Macro :
SAVE_PROCESSOR_STATE_TO_STACK

Purpose :
Saves the current processor state by pushing the values of all the registers onto the current stack, used when switching processes.

This normal version is used from within a normal function - it may be defined as the same as the ISR version.

Example :
#define SAVE_PROCESSOR_STATE_TO_STACK \

 _asm \

 push psw \

 _endasm; \

 ISR_SAVE_PROCESSOR_STATE_TO_STACK

Macro :
ISR_RESTORE_PROCESSOR_STATE_FROM_STACK

Purpose :
Restores a saved processor state by popping the values of all the registers onto the current stack, used when switching processes.

This ISR version is used from within an ISR function.

Example :
#define ISR_RESTORE_PROCESSOR_STATE_FROM_STACK

\

 _asm \

 pop 0x07 \

 _endasm ; _asm \

 pop 0x06 \

 _endasm ; _asm \

 pop 0x05 \

 _endasm ; _asm \

 pop 0x04 \

 _endasm ; _asm \

 pop 0x03 \

 _endasm ; _asm \

 pop 0x02 \

 _endasm ; _asm \

 pop 0x01 \

 _endasm ; _asm \

 pop 0x00 \

 _endasm ; _asm \

 pop dpl \

 _endasm ; _asm \

 pop dph \

 _endasm ; _asm \

 pop b \

 _endasm ; _asm \

 pop acc \

 _endasm

/* program counter will get popped off stack when function call returns */

Macro :
RESTORE_PROCESSOR_STATE_FROM_STACK

Purpose :
Restores a saved processor state by popping the values of all the registers onto the current stack, used when switching processes.

This normal version is used from within a normal function - it may be defined as the same as the ISR version.

Example :
#define RESTORE_PROCESSOR_STATE_FROM_STACK \

 ISR_RESTORE_PROCESSOR_STATE_FROM_STACK; \

 _asm \

 pop psw \

 _endasm

